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The equations of magnetohydrodynamics of a perfect fluid are classified with 
respect to the Coriolis parameter, and all essentially different solutions of rank 
one are indicated. The geometry of streamlines is discussed. 

1. I N T R O D U C T I O N  

Transformation group methods have been extensively used for 
analyzing and classifying differential equations. For the magnetohydrody- 
namic equations with which we are concerned here, it may be remarked 
that the classical procedures require considerable modifications to yield 
acceptable results. One of  the initial attempts in this direction seems to 
have been that of  Kucharczyk (1964), following an earlier model of  Yano 
(1955). Ladikov (1962) studied the geometry of streamlines. Recently Singh 
and Choubey (1985) and Singh and Tripathi (1986) obtained the geometry 
of streamlines in the case of  magnetogas flows with magnetic field lines 
acting along a fixed direction and under the influence of  a Coriolis force, 
and considered the physical application of M H D  equations. In the present 
paper  the problem of the group classification of  the system (6) is solved, 
an opt imum system of one-parameter  subgroups is determined, and all 
essentially different solutions are indicated. The method followed in this 
paper  seems to have a physical advantage over the available classical 
techniques of  flow classification. 

2. FLOW E Q U A T I O N S  

Under the influence of  a rotating reference frame the magnetohydrody- 
namic equations of  a perfect fluid are 

d i v v = 0  (1) 
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(v- grad)v + 2toxv = -g r ad  p +/~ curl H x H (2) 

curl vxH = 0 (3) 

div n = 0 (4) 

where v, H and to are velocity, magnetic field, and angular velocity vectors, 
respectively, and /~ is the magnetic permeability. Equation (4) asserts an 
additional condition on H, expressing the absence of  magnetic poles in the 
flow. Following Surayanarayana (1965), we take the plane transverse flow 
as governed by 

Ou Ov 
- - + - -  = 0 
Ox y 

Ou Ou = Op* 
u - - + v - - - o , * v  - (5) 

Ox Oy Ox 

Ov Ov _ Op* 
u - - + v - - + t o * u - -  

Ox Oy Oy 

where v= (u, v), p * =  (p+�89 2) is the total pressure, and to* =2w is the 
Coriolis parameter. The factors w*u and ~o*v represent components of  
acceleration produced by the Coriolis force due to the rotation of  the earth, 
and the parameter w * ( y )  can be an arbitrary function of  y. For an arbitrary 
w*(y), the system (5) admits a certain group of  transformations G. The 
special fOrms of the function oJ*(y) for which the fundamental group 
admitted by the system (5) is wider than G are to be determined. 

3. CLASSIFICATION OF EQUATIONS 

3.1. For any arbitrary function r the basic operators of  the 
related Lie algebra are of the form 

X ,  = OlOp, X2 = O/Ox (6) 

For other forms of w*(y) we find the following results. 

3.2. If  w* =ym- l (m # 1), the operator 

O O O a 
X 1 = x--~x+Y~y+ mU~u+2mp-~p (7) 

is added to the operators (5). 

3.3. If  w* = emY(m # 0), the operator 

X~ 0 0 m y ~  2rap,  0--- (8) : - - q -  m u  - - - ' l -  
Oy OU OV op 

is added to (5). 
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3.4. I f  oJ* = 1, the fundamental  group is generated by five operators, 
with the three operators 

0 0  0 
X3= x - - + - - +  u - - +  v +2p  

Ox Oy Ou ov op (9) 

a d a o o a 
X s = - y  + X ~ y - X ~ y - V - - + u - -  X4 = Oy ' -~x Ou Ov 

added to (5). 

3.5. I f  ~o* = O, the group is generated by six operators, with the operators 

0 O O a a o a 
X4= ~x +y ' X 4  Oy X s = - y ~ x + X  v - - + u - -  

" Ou Ov (10) 

0 v O + 2 p O  X 6 = - - +  
Ou ov op 

added to (5). 

4. S O L U T I O N  FOR oJ* = CONST 

Let us construct the essentially different solutions for the first three 
cases. 

4.1. I f  to*(y) is an arbitrary function, the opt imum system is generated 
by operators (5). The subgroup with operator X1 is eliminated, since for it 
the necessary condition of the existence of an invariant solution is not 
satisfied, while the subgroup with operator  X2 provides a solution that 
depends on y. The substitution of  these into (5) yields the system 

vu'=eo*v=O, vv '+w*u=-p ' ,  v'=O 

where the prime denotes differentiation. From the last equation we have 
v = Vo; for Vo # 0 the integration yields 

U=Uo+A(y), p=po-�89 

A'(y) = w*(y)  and f is an arbitrary function of  its argument. If, however, 
Vo = O, then 

u = uo+f(y), P =P~ I w*(y)[uo+f(y)] dy 

In the first case the streamlines are defined by the formula 

uoy - VoX + j (y) dy = const 

and in the second the streamlines are straight lines parallel to the x axis. 
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4.2. For w*= y,,-1 the optimum system is generated by operators X, ,  
X~ and Xz+aX~,  and the solution for the subgroup with operator X~ is 
of  the form 

u = xmU(~:), v = x m V ( ( ) ,  p = x2m(~:), ~ = y / x  

The last subgroup yields a solution of the form 

u= U(y) ,  v= V(y) ,  p = a x + P ( y )  

Substituting in (5) and integrating, we find the following solutions: 

1 OL 
u = Uo+-Sy m - - - y ,  

m I) o 
/ ) =  /)0 

1 y2m ~ Of. m + l  U 0  m 

P=po+aX-2m----5 vo(r~+ 1) Y - m Y  

It is assumed that in this case m r 0, m r -1 .  
In meteorological problems the Coriolis parameter is often approxi- 

mately by a linear function, which corresponds to m = 2 .  In this case 
streamlines are cubic parabolas, and the solution may be treated as defining 
a crest type offlow. Meteorological observations show that such flows result 
in the formation of fronts with an abrupt change of  weather. 

If m = 0, the solution is of the form 

OL 
u = u o + l n y - - - y ,  

/)0 
/ ) :  l) 0 

OL 
p =po + a x - � 8 9  2 y + - y - u 0  l n y  

/)0 

For m = -1  

1 OL 
u = U o  - - -  - - -  y ,  

y Vo 
I) = 1) 0 

1 OL 
p = po+ ax - 2y---5 + v---o In y +UOy 

4.3. For w* = e my the optimum system of one parametric subgroup is 
generated by operators aX~ + X2 and X~+ aX2. The first subgroup yields 
solutions of the form 

u = U ( y ) ,  v= V(y) ,  p = a x + P ( y )  
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Putt ing these into system (5) and  integrating,  we obta in  

U : tlO q - L  e my -~'-~ y v  = Vo 
m Vo 

1 
p = p o + a x + - ~ [ ~ o ( m y - 1 ) - l - m u o ]  e my 

which is s imilar  to that  for crest  type o f  f low.  
The solut ion for the second subgroup is of the form 

u = emYU(~) ,  v = emYV(~) ,  p = e2myP(~:), ~ = y - a x  

and  the u n k n o w n  funct ions  satisfy the fol lowing system of equat ions:  

U U ' +  V ' ( m U - a U ' ) -  V = - P '  

U V '  + V ( m  V - a V')  + U = - 2  m P  + a P '  

U ' + m V - a V ' = O  

Another  solut ion of this system is 

U = a + Vo eke, V = Vo eke, P = bvo e k~ - a / 2 m  

( a - l )  2 1 - a  2 m 

a = m ( a 2 _ 2 a _ l ) '  b = m ( a 2 - 2 a - 1 ) '  k = a _  1 

The streamlines @ = const  are specified by 

x = y - [ ( a  - 1 ) / m ]  ln(const  - a~ m e my) 

and  represents a curve t end ing  to a straight  line. This solut ion can simulate 

the flow in a cumulat ive stream. 

5. SOLUTION FOR CONSTANT CORIOLIS PARAMETER 

Before proceeding with the const ruct ion of the solut ion for w* = 1 and  
w* = 0, we note that the inpu t  system (5) for a constant  Coriolis parameter  
can be replaced by an equivalent  system by subst i tut ing the vorticity [ l  = 
uy - vx for one of the u n k n o w n  functions.  For  ~ = 0 system (5) is equivalent  
to the C a u c h y - R i e m a n n  equat ions  u y - v x  = 0 and  u x - v y  = 0, which admit  
an  infinite group of t ransformat ions .  Because of this we subsequent ly  seek 
only  solut ions of nonzero  vorticity. It will be necessary to use the input  

equat ions  in polar  coordinates  

x = r cos O, y = r sin O, u = fl  cos th, v = fl  sin th 

The expressions for the vorticity and  the stream funct ions  are 

['~ : COS( q~ -- O ) ( ~ [-~ 6 -- f~q~r) -- sin( c~ -- O ) ( ~-~r + ~ C~o ) 

(11) 
@r -- -sin(~b - 0), r~,o 1 = cos(~b - O) 
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The arbitrary constants o f  integration o f  equat ions in polar  coordinates  are 
denoted by 12o, Po, and ~bo. 

5.1. Solutions for w * =  1. The op t imum system is generated by seven 
operators,  

X , ,  X2, X~,  X~ + X2,  X2 + Xs ,  X3 + aX5 

Let us write (5) in polar  coordinates.  Taking into account  t r igonometr ic  
identities, we obtain the fol lowing system: 

- -  r + D sin( qb - O) = pr 
r 

f ~ 2 O r + l ~ c o s ( c b - o ) = l p o  (12) 
r 

 os+ sin+ 0 

In  the same variables the operators  X3 3, Xs assume the form 

X~ r O + ~ 0  + 2 P  O 0 0 = X 5 = ~ +  
Or O~ Op' Oqb 

5.1.1. The subgroup with operator  X1 does not  yield invariant sol- 
utions, since the necessary condi t ion for  the existence o f  such solutions is 
not  satisfied. 

5.1.2. The subgroup with opera tor  X2 yields the solutions, which 
depend  only on y. Integrat ing (5), we obtain 

u = Uo + y, v = Vo, P = P o -  ly2 _ uoy if Vo +s 0 

u = - f ' ( y ) ,  v = O, p = f ( y )  if Vo = 0 

In  the first case the vortex l)  = 1 and the streamlines are represented by a 
set of  Parabolas.  In second case f~ = - f "  and the streamlines are straight 
lines parallel to the x axis. 

5.1.3. For  the subgroup with operator  X 3, we seek the solution in the 
form f~ = rw(O), 4> = qb(0), and p = rZP(O) ", substituting into (12), we obtain 
the equat ions 

0.)2(/~;'~- W sin(~b-  0) = 2P, w cos(~b-  0) = - P '  

cos(~b - 0) w(1 + 4~') + sin(& - 0) ~o'= 0 

In integrating this system, we consider  two cases: ~b'= 0 and qS'~ 0. For  
4~' = 0 the solution is o f  the form 

f~ = f~or sin(0 - qSo), q5 = 4>0, p = - -  � 8 9  sin2(0 - 4>o) 
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It can be shown that  1) = 1)o. This solut ion yields s t reamlines  that  are parallel  

straight lines at  an angle 4' to the Xo axis. Since the diirection of  coordinate  
axis was not  specified, the x axis can be made  to coincide with that  o f  the 
velocity vector,  i.e., we can set &o = 0. The absolute  value of  the velocity 
vector  is p ropor t iona l  to y. 

The second case, in which 4'0 ~ 0, yields a solut ion that  can be writ ten 
in the pa ramet r i c  fo rm 

( l fa. a = r \ f - - ~ j  , ~ b = O + s i n - 1 L  O ( z + l ) , / 2 j  

] 
4' = 4'o+�89 sin -1 (1 -2 f~2 ) ( z  + 1) - 2 a o  2 

( z +  1)[(1 - 4a2)]  '/2 

For  the vor tex and s t ream funct ions we have 

\ a o ]  

= Oo - f~--2~ r2 z + 2 = -Flo + a t2+  br 2 sin(2 0 - 2po) 
2 z + l  

a 1 ( p o l  1/2 1 1) 

By a suitable selection o f  coord ina te  axes it is possible  to obta in  4'0 = 0 and  
the s t reamlines  are defined by 

a(  x2 + y 2) + 2bxy  + const  = 0 

i.e., they represent  a set o f  ellipses in the system o f  coordinate  turned by 45 ~ 

5.1.4. The subgroup  with opera to r  )(5 yields a solut ion of  the fo rm 
~ =  to(r), 4' = 4 ' (r) ,  and p = p ( r ) .  Substi tut ing into (12), we obtain the 
system 

1 
- to 2 + w sin 4' = P ', t o 2 4 ' + t o c o s 4 " = 0  
r 

(13) 
cos 4' [ w ' +  ( 1 / r ) w ]  - sin qbwqb'= 0 

The last equat ion  yields the first integral rto cos qb = 1)o. We can now write 
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the general solution 

r2~2] l/z 

..= o+t. (..o_ ) 
2 

P = P o - 8 - ( l +  ~b2o)2r 212---~176 

The streamlines 

0 = 4'o In - l r 2 / f t o +  const 

are represented by set of spiral lines with the source (f~o > 0) or sink (12o < 0) 
at the coordinate origin. 

For f~o$o < 0 the angle 0 along the streamline varies monotonically, 
while for I~o~bo > 0 the monotonicity breaks down. It can be shown by direct 
calcuation that for such flow the vorticity is constant and equal to unity. 

5.1.5. For the subgroup with operator Xa+X:  the solution is sought 
in the form u = U(y),  v= V(y),  and p = x + p ( y ) .  Putting these into (5), 
we get 

u = U o +  V o -  1 y v  = Vo 
Vo 

Vo-1 2 Vo-1 
P = po + X + Uoy ---~Vo Y ,  12= 2Vo 

If Vo = 1, the vortex is nonzero and the streamlines are parabolas with their 
axis parallel to the x axis. If  Vo = 0, the system (5) becomes inconsistent. 

5.1.6. For the subgroup with operator X1+Xs ,  the solution is of the 
form 12 = w(r), 0 = O+dP(r), and p = O+p(r). 

The unknown function is determined by the system (5) in which - 1 / r  
is substituted into the right-hand side of the second equation. Integration 
of the obtained equations yields the solution 

~ = f l ~  [1 +(~bo 
r 

~b = 0+ tg  -1 ( ~ b o - - -  

~o+1  )211/2 
2122 r2 

12o+ 1 
2121 rZ) 

) r~ n~o 1 ~__( i+ ,~)  T r  _ 4,oln ~ p = p o  + -  1 - ~--~o2 
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The solution is similar to that derived in (5.1.4) and the vortex 12 = 1 + 1/12 0 
is nonzero throughout. 

5.1.7. The last subgroup with operator X~ + aX5 generates a solution 
of the form 

f~= rto(sc), q~ = 0 +dp(s~), p = r2p(~ :) 

were ~ = r e -~ 

5.2. For to*= 0, (5) in polar coordinates is of  the form 

f~2 
- -  qbo = P r ,  a 2  q~r = - l- p o  

r r 

In certain instances the last equation will be represented in a somewhat  
different form by the substitution for the derivatives of  6 of  their expressions 
in the first two equations. In polar coordinates the operators X 4 and X6 
are of  the simpler form 

0 0 0 
X~ -= ror, X6 = 0-~+ 2p~p 

The opt imum system of one-parameter  subgroups is generated by 11 
operators, which for convenience are divided into two classes: 

1. X2, X 4, Xs, X34+Xs 
2. x ,+x2 ,  x , + x  4, x2+x6, x , + x s ,  x , + x ~ + x s ,  

x4 + x6, xo + x ,  

Direct calculation shows that operators of  the first class yield solutions that 
define vorticity-free flows only; hence, in accordance with what has been 
previously stated, we restrict the analysis to operators of  the second class. 

5.2.1. The subgroup with operator XI+X2 yields a trivial solution 
u = Uo- y~ Vo, to = 0, and p = Po. The streamlines are parabolas with their 
axis parallel to the x axis. For v0 r 0, (5) becomes inconsistent. 

5.2.2. For the subgroup with operator X I +  X3 4 we seek a solution of 
the form 

12= to(0), q~ = ~ ' (0 ) ,  p=lnr+P(O)  

Substituting in (12), we obtain 

o)2(I) ' =  1, c o s ( O -  0) toqb+sin(O-- 0)to' = 0, P=Po 
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We use the first o f  these equat ions to determine to in terms o f  the reduce 
the second equat ion F" = 2(1 + F ' )  2 etg F by introducing the new funct ion 
F = ~b - 0 and substituting for  to. The order  o f  this equat ion is reduced by 
one by setting F ' =  ZF. The lower order  equat ion is integrated and yields 
the fol lowing dependence  o f  F on Z :  

1 
I~o sin 2 F = ( Z +  1) exp Z + 1 

Let us consider  Z as a parameter  that reduces the solution to one quadrature.  
The solution itself can be represented in the parametr ic  form 

~-~ = t 1/2 

O = O + F ( t )  

p = p o + l n  r 
e t / 2  

F ( t )  = sin -1 (Oot)1/---------~ 

1 f dt 
0 = d~o-'~ Oot e - '  - 1 

1 
t = - -  

Z + I  

The vorticity O = -f~o ~/2 e - t /2 / r  is nonzero  throughout .  The streamlines are 
represented by a set o f  spiral lines and the solution exists only for  Oo > e. 

5.2.3. The subgroup X 2 + X 6  generates a solution o f  the form u = 
e X U ( y ) ,  v = eXV(y ) ,  and p = e2Xp(y) .  Th e  substitution o f  these expressions 
into (5) yields 

V V " -  V'2-- 2Po, P - -  Po (14) 

I f  Po = O, then the solution has the form 

U = - - U o V  o e x+v~ I) = I) o e x+v~  p = 0 

and the streamlines are straight lines x + roy = const. But Po ~ 0, and the 
second equat ion (14), after a single integration, yields 

V '2 = A V 2 - B 

where A and B are arbitrary constants. Several cases must  be considered,  
depending  on the signs o f  A and B. 

(1) I f  A =  vo 2 and B / v ~ =  _p2,  the solution is o f  the form 

u = -VoPo e x ch(voy + Uo) 

v = Po eX sh(voy + Uo) 
1 ~ 2 2 x  

p = -~VoPo e 
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I fpo < 0 and Vo > 0, the streamlines approach the straight  line y = Yo = Uo/Vo. 
I f  however, Po > 0 and Vo < 0, the streamlines move away from the straight 
line y = Yo- Other combinations of  these inequalities yield a similar flow 
pattern, except that the velocity vector changes to the opposite direction. 

(2) When A =  Vo 2 and B / v ~ = p ~ ,  the integration of  (15) yields the 
solution 

u = VoPo e x cos(roy + Uo) 

v =Po e x sin(roy + Uo) 
1 2 2 e2X 

p = - ~VoPo 

The solution is periodic with respect to y. The flow is divided into bands 
7r/vo wide, inside which the velocity vector monotonically changes to the 
opposite direction along the streamlines from one boundary of the band to 
the other. The flow resembles that with contact  discont inui ty  of equations 
for a compressible fluid. 

The vortex is defined by the formula 

= po(v  2 - 1) e x sin(roy + Uo) 

For [Vol # 1 the vortex is nonzero. For the first two cases it is nonzero for 
any values of  the constants. 

5.2.4. For the subgroups with operator X I +  X5 the solution is sought 
in the form 1~ = w ( r ) ,  r = O+Cb(r),  and p = O + P ( r ) .  Substituting into ( ) 
and integrating, we get 

r ( r2 ''2 
f~ = O_.~Or L 1 + \'/'~ _[ 

~ = O+tg -1 ~o-~--~o 2 

1 2 ~..2"~ ~ ) -  ~ 
p = p o + - ~ o o r 2 - ( l + u ,  OJ 2r 2 u,0 In r 

The constant Oo is assumed to be nonzero, since otherwise the system of 
equations would be consistent. The vortex is determined by l~ = 1/Oo and 
solution is similar to that derived in 5.1.4. 

5.2.5. The solution generated by the subgroup with the operator  X~ + 
X 4 + X 5  can be represented by f~ = w(sc), ~b = 0 +@(so), and p = 0 +  P(~:), 
where ~: = r e -~ is the new independent variable. 

5.2.6. For the subgroup with the operator  X 4 + X 6 ,  the solution is 
specified by the formulas ~ = rw(O),  r =0(0) ,  and p = r2P(O),  where the 
unknown functions are determined by the equations 

P =Po, oJZqb' = 2po, cos(qb-  0) (w2+ 2po) + sin(qb - 0) ~ow' = 0 
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For Po = 0 the solution of  the system is 12or s i n ( 0 -  d~o), d~ = tho, and p = 0, 
which in the system of  coordinates rotated by an angle ~0 corresponds 
to the couette type flow. If Po ~ 0 the solution can be represented in the 
parametric form 

( 2po ~ '/2 
12= r \ -~-~ ] 

d~ = 0 + s i n  -~ f~o(Z +2)  
( Z + I )  1/2 

p = po r2 

0 = tho+�89 sin -~ (1 - 2~o)(1 + z)  -212 2 
( z +  1)(1-4122)  '/2 

The solution is the same as ( ), except for the expression for the pressure. 

5.2. 7. The last subgroup, with operator X5 + X6, generates the solution 
f~ = e~ d~ = O + ~ ( r ) ,  and p = eZ~ 
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